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I1 ABSTRACT

The effectivenes of damping tiles in reducing the vibration response of a point-excited,
clamped-edge plate immersed in water was investigated in a combined theoretical and ex-
perimental program. Comparisons of measured acceleration spectra for damped and un-
damped plates in both air and water environments indicate that damping tiles are less effec-
tive in a water environment than in air. A theoretical solution, based on thin-plate theory,
of the acceleration power spectral density of a simply supported, fluid-loaded plate is
derived and utilized to interpret the experimental results. From the theurefical solution,
an approximate theory for plate acceleration in the vicinity of resonance is developed to
quantitatively evaluate the effectiveiiess of damping tiles in a water environment. The com-
bination of theory and experiment reveals that, in a water environment, the forces applied
to the plate by the water dominate over those applied by the damping tile, thereby rendering
the damping tile less effective in reducing plate vibrations.
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ABSTRACT

The effectiveness of damping tiles in reducing the vibration response of
a point-excited, clamped-edge plate immersed in water was investigated in
a combined theoretical and experimental program. Comparisons of meas-
ured acceleration spectra for damped and undamped plates in both air and
water environments indicate that dampingtiles are less effective in a water
environment than in air. A theoretical solution, based on thin-plate theory,
of the acceleration power spectral density of a simply supported, fluid-
loaded plate is derived and utilized to interpret the experimental results.
Fromthe theoretical solution, an approximate theory for plate acceleration
in the vicinity of resonance is developed to quantitatively evaluate the effec-
tiveness of damping tiles in a water environment. The combination o1 tneory
and experiment reveals that, ia a water environment, the forces applied to
the plate by the water dominate over those applied by the damping tile,
thereby rendering the damping tile less effective in reducing plate vibrations.
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EFFECTIVENESS OF DAMPING TILES FOR REDUCJNG
VIBRATION OF PLATES IN WATER

INTRODUCTION

The vibration of a ship's hull plating excites a pressure field in the
surrounding water. This field is partly responsible for the self- and radiated-
noise of the ship, therefore any attempt to reduce the noise should include
suppression of hull vibration. This has usually been accomplished by appiying
damping treatments to tWe inner surface of the plating in order to dissipate
vibrational energy and thereby suppress hull vibration and the consequent

radiation of noise.

Inasmuch as pressure levels induced in the surrounding fluid are di-

rectly related to hull vibration levels, measurements of reductions in hull
vibration levels can provide an indication of the damping tiles' effectiveness.

In the past, laboratory measurements of the effectiveness of damping
treatments have been made in air. These measurements do not accurately
predict the effectiveness of the same damping treatment applied to a ship's
hull because they do not include the effects of the forces induced on the

hull by the water environment as a result of the vibration of the hull. These
fluid forces may be interpreted i - 3 as additional mast, or damping of the
plate. Previous investigations 4 of damping effectiveness have attempted to
account for the fluid-loading effects by utilizing a theoretically derive( cor-
rection to the experimental data obtained in air. However, this correction
has apparently considered only a portion of the actual fluid-loading forces.

This incomplete description may, depending on the material properties of
a plating/damping system, lead to error when attempting to extrapolate the

effectiveness of damping tiles in water from their effectiveness as measured
in air.

4A
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The objective of this study was to resolve directly the relationship of fluid
forces to the assessment of damping-tile effectiveness; this was accomplished
in a two-stage program. First, the vibration responses of damped and undamped
finite plates in air and water environments were measured experimentally.
Comparison of the responses provided a means for determining the effectiveness
of the damping tile, and the experimental data in both environments provided
the necessary information for determining the specific effects of fluid loading.
Second, a theoretical model, which provides separation and evaluation of the
effects of fluid loading, was developed for interpretation of the observed experi-
mental results. The model, which was derived from general plate theory, pre-
dicts experimental results reasonably well and should apply to other similar
systems.

EXPERIMENTAL APPARATUS

The experimental objectives were to provide data for determining the
effectiveness of damping tiles for reducing vibration of plates in water and for
determining the effects of the vibration-induced pressure field with respect to
assessing the effectiveness of damping tiles.

The acceleration power spectral density of a point-excited, clamped-edge
steel plate was measured in both air and water environments for both damped
and undamped plates. To provide for theoretically modeling the experiment, the
dimensions of the steel plate utilized in this experiment adequately satisfied
the requirements of thin-plate theory. The thickness and material properties
of the plate were also comparable tothe plating that is used for ship construction.

Figure 1 shows the apparatus used to measure plate vibration response to
a point-force excitation. A 2-ft by 3-ft by 1/4-in.-thick steel plate was clamped
along each edge to a stiff, massive steel frame. The bolts of the vise mecha-
nism were tightened with a torque wrench to maintain as uniform a clamping
force as possible along the edges of the plate. To prevent twisting of the frame
at its corners, the frame-plate unit was bolted into a plywood box. The entire
assembly was then vibration isolated from its surroundings by suspending it on
shock cord from an overhead chain hoist.

A more detailed view of the plate, cdge-clamping mechanism, shaker,
force gage, and accelerometers is shown in Fig. 2. An Endevco force gage
(model 2103-500) was stud mounted to an adapter that was fastpncd to the plate
by dental cement. A Wilcoxon electrodynamic rcaction shaker (model Fl),
which excited the plate through a frequency range of 35-3000 Hz, was then

2
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Fig. 1. Vibrating Plate Apparatus

Fig. 2. Plate Detail -- Edge-Clamping Afochanism, Force Gage,
Shaker, and Accelerometers
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coupled to the force gage by a stud. The combined shaker and force gage were
mounted at a point 0.3 ft to the right of the vertical centerline of the plate and
0.2 ft above the horizontal centerline.

Two Endevco accelerometers (model 2122D) were mounted by Allen screws
to adapters fastened to the plate by dental cement. Both accelerometers were
mounted on the horizontal centerline of the plate, one on the vertical centerline
and one 0.75 ft to the left of the vertical centerline.

The shaker, force gage, and accelerometers were selected with respect
to low mass, frequency response within the desired range, and availability. The
combined shaker and force gage, including mounting studs and adapter, had a

total weight of approximately 1 lb. The force gage had a sensitivity of 125 L±2%)
peak-mV/peak-lb within the frequency range 35-3000 Hz. Each accelerometer,
including its mounting stud and adapter, had a total weight of 0.037 lb and a
sensitivityof 12.5 (-+5%) peak-mV/peak-g within the frequency range 2-6000 lz.

Monsanto damping tiles are shown bonded to the plate in Fig. 3. Standard
shipboard techniques were used to apply the 1/2-in.-thick tiles to the plate by
means of Carbolene Neoprene-Adhesive F-1. The tiles covered the entire sur-
face area on the side of the plate opposite to that on which the shaker and accel-
erometers were mounted. (Monsanto tiles and Carbolene F-1 adhesive are the
materials normally utilized for shipboard damping applications.)

In Fig. 4, the experimental apparatus is shown suspended by shock cord
and immersed in thewater test tank at the Naval Underwater Systems Centerts
New London laboratory. Inasmuch as vibration of a plate in water, unlike that
of one in air, may radiate a large pressure field into the surrounding fluid,
holes were drilled in a portion of the plywood box in an attempt to minimize re-
flections of the radiated pressure field back to the surfaces of the plate. In
addition, the sides of the box not attached to the clamping frame were placed at
a 200 angle to the plane of the plate. And because vibration of the plate may
excite vibrations of the plywood box, causing unwanted acoustic radiation, it
seemed desirable to mass load the plywood box in order to reduce its vibration
amplitude; to this end, four small, massive lead weights were attached to the
long sides and bottom of the box.

A block diagram of the analysis equipment used to obtain the normalized
acceleration power spectral density of the plate is presented in Fig. 5. The
shaker generated a sinusoidal force as a result of a sinusoidal voltage applied
to the input. This input signal was then swept through the frequency range
35-3000 Hz.

4
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Fig. 3. Plate Detail - Damping-Tile Installation

Fig. 4. Experimental Apparatus Immersed in Water
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The resulting voltage outputs frmom the force gage and one of the acceler-
ometers were measured within 10-Hz bandwidths and fed to the indirect inputs
of a summing amplifier. The ratio of the inputs, obtained via the summing am-
plifier, yielded a voltage output proportional to the plate-acceleration power
spectral density that would result from a 1-lb force input. This normalized
value was directly plotted versus frequency on an X-Y plotter.

THEORETICAL MODEL

As illustrated in Fig. 6, the theoretical model for this study consists of
a finite plate, simply supported in an infinite, rigid baffle and immersed in a
fluid of density p and speed of sound c. The plate is excited into motion by
a pressure field p(xt), where x = (x,y). The resulting motion of the plate
excites a secondary pressure field in the fluid on each side of the plate that, at
the fluid-plate interface, also excites the plate. The secondary fields are indi-
cated in Fig. 6 by pa,0-,t) and Pa(x, 0+, t).

IFig, 6, Theoret.ical Model of Pla te BFLI SIMPY SUPORTD FIITE LAT

y- - - -
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Based on thin-plte theory, in which plate thic!ness is small compared
with the plate bending wavelength, the equation governing the plate dieplacement
w(x,t) in the z-coordinate direction is

4 2V w.t) + r + 3 w(.t)at D =p,t) +p (x,0-,t) - Pa(xO+,t), (1)

where D is the plate's flexural rigidity, r is the damping per unit area, and
p is the mass per unit area of the plate.

The pressure field induced by the plate vibration is governed by the wave
equation

2
V2pax 1, Pa=x'z't)

azt) c2 at2  (2)

and the equation which then couples the induced pressure field to the plate mo-
tion is the linearized momentum equation

OPa(Xz,t] 2

= _ 'a w(xt)

az 2 (3)
z=+0

In Eq. (1) it is assumed that the plate displacement can be determined in
terms of the in vacuo normal modes am n(x) by the equation5

w(,t) =W J W () ormLx) exp (iot) dw. (4)

The in vacuo normal modes are defined by

2 .mrx. y
(n -b for (0, 0)-- x < (ab)
ra (5)

0 elsewhere.

8
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Further, the in vacuo natural frequencies that correspond to these normal
modes are defined by

* Wnn =J Ic2 (6)

where
2k2

k a= r + .

Because excitatin forces on a ship's hull plaitz.g =rc :;dually random in
nature, it is desirable to determine the response statistics of the vibrating
structure. In the case of the finite plate, the normalized acceleration power
spectral density was the plate statistic measured in the corresponding experi-
mental study. The piate-acceleration power spectral density 4 alxa) is
related to the cross-spectral density of the exciting pressure field Sop(x, ", W)
by the complex frequency response of the plate H(x,x',w) in such a way that6

4*a(x, c) = (x, ', () H(x,x', -) H(x,x'+ ', t( d' dxl'. (7)

The complex frequency response of the plate is defined by the equation

w( , t) = H(.,x', c) exp (iwt) (8)

when

p(x,t) = A(x-x') exp (iwt). (9)

In order to solve Eq. (1) it is necessary to determine the induced pressure
field pa(x, 0+, t) on both sides of the plate. By defining the Fourier transform
pair

x,t) =- % z w)exp[i%- x + wt)I dk dw
a-- (2w)3/ jff~Z

9
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P fz, w)= z,t) exp [-i -x+ (10)
(2,

-00

and by imposing the radiation condition on pa(x,z,t) such that Pa(X,z,t) must
radiate away from the plate or patx, z, t) must decay with distance away from
the plate, Eq. (2) becomes

P:(k, ,.exp(IJT7i-k z) for I >kI

and (11)

- gk. w) exp f r f g (i )epi k,

a~ (2t s1) Zq

2(12
P w~) exp (k. k0) fod k I

4 I>IZj 0

where 0

In q.f ), o ~cag (k= (a (x02ex (- . o )dx 3) 4, 1)

and
pa(xO-,t) k (X O+,t).

.0
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Then, from Eqs. (1), (4), (6). and (12),

p j WZ [+ -wI W (CO) 'x (x) pF x c) pw W~qs- (2w) qs
q,s=l q. 9=1

) (13)

f2 IO j 2 2

where (4

I Multiplying Eq. (13) by ornm(x) and integrating over all x yield

[ 2 _ 2 iwJW.(ca+ 2 22
f(2 qs)

____ ____ ____ __ )(15)
f gm(-V g() dk f gn(-V g222dk F_(w)

k - -kojk-

0) 0 J

£ where

F (() FX )a( x(16)

Er Define

( __-k~g(k) dk
r P) I(17)nmqs 2 )

10 0

Lkj:Sj11

4
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and
' I gn(k g sk) dk

2p Inn as~ (18)
mnqs (2w)2  o

by substituting Eqs. (17) and (18) into Eq. (15), one obtains the following set
of coupled equations for the frequency-dependent, modal coefficients of the plate
motion Wn(w):

r
mnqst_____)[imq S ran mqins P 7 Vmq 6ns r

q,s=1
(19)

*In (w)()
Wqs A

where

Equation (19) represents the solution for Wqs(w) in terms of an infinite
m x n set of simultaneous equations. In these equations Pmnqs(co) appears as
an additional inertial term and rmnqs(w) as an additional resistive term.
Both terms occur as a result of fluid loading and introduce cross coupling of
the m, n-th mode to the q, s-th mode. If both unmqs and rmsqs were zero,
Eq. (19) would reduce to the in vacuo uncoupled solution of Wmn(w).

Consider the fluid-loading solution for Wqs(w) in Eq. (19). By defining

A c'2 _, Umnqs(~~
mnqs(W = mq n inn - aq Ins

(20)
. (m rrw mnqs I+i ++ P{ (6mq 'ns +rq()]

12
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Eq. (19) becomes

F
A ( Wn n ) (21)

mqs qsA
q,s=l

By a-so defining Bumqs(w) in such a way that

k, l Bijk Ak mn im in' 
(22)

Eqs. (21) and (22) may .I-c utilizeI to sht," that

W~ ~ Inn B mns(w) F qs(w) . 3

q,s=l

Fro,! the definition in Eqs. (8) and (9) of the complex frequency response,

Eqs. (4), (14), (16), and (23) may be utilized to obtain the fluid-loaded plate's

complex frequency response

H~x~, )= muqsW mnl ) qW-' •1

m,n71 q,s=1

From Eqs. (7) and (24), one can express the fluid-loaded plate's accelera-
tion power spectral density as

(25)

fJ ,PP ~x , w) E(.) (x' + a') dx' .

13
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PI
The cross-spectral density S c', ', w) of the excitation force is given IV

S Wx,,w)= Cx' x ) 6(' + ' -x (26)
pIP ~0o ~o

for a sinusoidal excitation force of tnit amplitude over all w applied at a
point xo"

This expression for excitation force was chosen because it corresponds
most closely to that of the experimental analysis.

Substitution of Eq. (26) into Eq. (25) and integration over x' and .C
yield the acceleration power spectral density for a point-excited, fluid-loaded
finite plate, which is

(W) W2.4~w B- (w) a.(xa (x
i,j=1 k,i=1 m,n=1 q,s=l (27)

(x k(o) Cs 2so)•

Now, consider the in vacuo solution for the acceleration power spectral density.
By substituting Eq. (19), with rmqs = Pmnqs = 0, into Eq. (22), one obtains

B.. (in 28)
Bijnm(W)= 2 m 2 + ].rn(

Substitution of Eq. (28) into Eq. (27) gives

=a( 'j E ki) - qs() c'k/xo) rqs(o 29°)

r(xw 2 2 ] 2r ' (29

which is the point-excited, in va-uo solution for the acceleration power spectral
density.

14
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EXPERIMENTAL RESULTS

Figures 7 and 8 are comparisons of measured, normalized acceleration
power spectral densities of point-excited, clamped-edge damped and undamped
plates in an air enviionmeni. Figures 9 and 10 are comparisons of measured,
normalized acceleration power spectral densities of the same plates in a water
environment. The acceleration spectra of Figs. 7 and 9 were measured at the
center of the plate (x = 1.5 it, y = 1.0 ft) and those of Figs. 8 and 10 were
measured at a point along the horizontal centerline midway between the center
and edge of the plate (x = 2.25 ft, y = 1.0 ft). (See Figs. 2 and 6.)

Figures 7, 8, 9, and 10 indicate that the application of damping tiles is
accompanied by a reduction in the peak acceleration levels of the plate. How-
ever, comparison of Figs. 7 and 9 also shows that, for identical plates, the
reduction is less for water loading than for air leading. Similarly, except for
frequencies greater than 1500 Hz, comparison *f Figs. 8 and 10 also shows less
reduction for water loading. It appears, therefore, that damprig tiles are
less effective in water than in air for reducing plate vibrations; inasmuch as
identical plates and tiles were used in air and water, the water environment
must cause the reduction in effectiveness.

To understand the smaller reduction of plate acceleration levels observed
S- for water loading, one must determine the extent to which the reduction in water

is governed bythe properties of the damping tile in comparison with thi:t portion
governed by the properties of water. This will be accomplished by utilizing the
theory developed in the preceding section to describe the major effects of water
loading. A theoretical analysis will then be developed to quantitatively interpret

athe separate effects of water loading and damping-tile applications on reducingf plate vibration.

WATER LOADING

To illustrate the effects of water loading, Fig. 11 presents a comparison
of computed air- and water-loaded plate-acceleration spectra at the center of

an updamped plate. These spectra were computed by numerical evaluation
of Eqs. (27) and (29). * Only the first few corresponding natural frequencies

*Equation (29) describes the acceleration of a plate an vacuo, but because

=the density of air is small, Eq. (29) is considered valid for the acceleration of
a plate in air.

15
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between air- and water-loaded plates* are presented because of computational
difficulties encountered for a water-loaded plate at high frequencies. The plate
natural frequencies at which resonance occurs, are identified in Fig. 11 by their

mode numbers. For convenience, the plate damping is assumed to be 1 percent
of the in vacuo critical value for both air- and water-loaded plates (where the in
vacuo critical damping for a finite plate is defined as rc = 2,mn). This damp-
ing value is comparable to that computed from the Q, or sharpness of resonance
of the measured spectrum shown in Fig. 9 for the undamped air-loaded plate.

The major effects of water loading evidenced by the spectraof Fig. 11 are

* a reduction in natural frequencies,

* a decrease in the general levels of acceleration, and

" a similarity in the sharpness of resonance Q.

To express these effects quantitatively, the equations on which the spectral
computations were based will be investigated in conjunction with the computed
spectra of Fig. 11.

The dependence of the air-loaded plate-acceleration spectrum on the
properties of the plate is evident in Eq. (29). In Eq. (27), however, the depend-
ence of a water-loaded plate-acceleration spectrum on the properties of both
plate and water is not clear. This difference between the spectral equations
for air- and water-loaded plates is a result of cross coupling between plate
motion and the surrounding water; this cross coupling is introduced into the
water-loaded plate equation via the fluid mass T mnqs and the fluid damping
rmnqs. Therefore, to understand the dependence of plate motion on the water
environment, it is necessary to determine the magnitudes of mass and damping
associated with the water relative to those of the plate alone.

Table 1 lists the computed natural frequencies for the water-loaded plate
spectrum of Fig. 11 and the corresponding estimated natural frequencies.

*Figure 11, however, does not dispiay a one-to-one correspondence be-

tween air- and water-loaded plate resonances. Cross coupling of the plate
motion to the water causes a change in mode shape between corresponding : -
and water-loaded plate modes. For certain modes, a change in shape is
accompanied by a spatial shift in the nodal lines. Consequently, acceleration
eitaion at~a nodal line for air ioading may produce a resonance for water
loading.

21
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Table 1

COMPUTED AND ESTIMATED NATURAL FREQUENCIES

Water Loading

Mode No. Air Loading __mnmn__mn
rm-n wnm

Estimated Computed

1-1 377.5 3.970 102.6 102.5

2-1 725.9 1.973 270.1 269.9

i-2 1161 1.574 475.4 475.6

2-1 1307 1.466 550.7 562.2

2-2 1510 1.265 675.9 674.8

3-2 2091 1.030 1014 1016

4-1 2120 1.057 1018 1026

1-3 2468 1.148 1148 1194

I 2-3 2816 0. 905 1434 1435

4-2 3904 0.854 1511 1512I

5-1 3165 0.870 1635 1659~: I
f 3-3 3397 0.804 1807 1814
r

5-2 3949 0.722 2181 218L

Plate Properties: A= 0.317 lb-sec 2 /ft 3 and D 3575 lb-ft

2

F
I

i-
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Since plate natural frequencies are proportional to p-1/2, the water-loaded
natural frequencies were estimated by utilizing only the autocoupled fluid mass
Omnn and the mass of the plate. That is,

=mn + l (30)

where cjn is the estimated water-loading natural frequency. The computed
and estimated natural frequencies differ, on the average, by less than I percent;
therefore the reduction in natural frequencies accompanying water loading is
due almost entirely to the autocoupled fluid mass imnmn-

To resolve the coupling properties of the fluid damping rmnqs, an attempt
was made to predict .the resonance amplitudes by using only the autocoupled
resistive term rnmmn. However, predictions based only on rmnmn were not
in agreement with the actual spectral computations shown in Fig. 11. Conse-
quently, it was concluded that fluid damping associated with a particular mode
(r~n) is a summation of many contributions of rmnqs. Because of this exten-
sive cross coupling of fluid damping terms, it is difficult to quantitatively
evaluate the resistive component of water loading.

To circumvent this difficulty, it is hypothesized that an equivalent, un-
coupled expression forthe water-loading acceleration power spectral density of
Eq. (27) might be written

4 co 0

m,n=l q,s=l

1

-[2 2( mnmn) 2 +q
IMqsr

(31)

where tnmn, based on Eq. (30), is the fluid mass, and rhm is the equiva-
lent fluid damping. In Eq. (31) for the water-loaded plate spectrum and Eq. (29)
for the air-loaded plate spectrum, one may show that near a particular reso-
nance (i,j) the maximum and controlling term in the summation occurs when
m o i and n = s = j. This assumption, however, is valid only when the
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total damping (r + r u) of the vibrating system is lessthan 10 percent of the in
vacuo critical value r.* When this condition is satisfied, the acceleration
power spectral densities in the vicinity of the i, j-th resonance for both water-
and air-loaded plates, respectively, may be approximated brj

42 2

(4 aij(x) 2 r1 o (32)
ij- 1 + q (t

and

2

-3 L (33)[(L2 .,rw2 2CO2) +

For brevity, water-loading quantities will hereafter be denoted by primes,
such as *aij

Equations (32) and (33) can be utilized to quantitatively evaluate the reduc-
tion in resonance amplitudes and any change in sharpness of resonance that
accompanies water loading. The resonance amplitude for a water-loaded plate
is evaluated by letting co = w . in Eq. (32); thit is

DkO. a2j.x) ai..(! 0)

Ii J XJ 'Lu (34)0aij'x, w)=[+iiwj) r+rjoj) 2 " 3)

For an ax-loaded plate, the resonance amplitude may be determined by letting
w : ij in Eq. (33), or

4 2- 2
Dk aJ(X) (35

*aij ' c-j) - 2 (35)
pr

*This limitation imposed on the magnitude of total damping is dependent
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The sharpness of resonance Q is defined as the resonance frequency wn

divided by the half-power-point bandwidth of the resonance peak &wnm. From
Eqs. (32) and (33), for water loading,

-r + IPA ... 1

Q!~ .( j W! V ii rk!(w. . 'Q -! (36)
=L L I r + 2!.(' ' '2

131j r
L+

and, for air loading,

2F41Qi x, W .) - .. (37)
I" 1] IA k ij - r I

where " is defined as the fraction of in vacuo critical damping

r (38)
~r

Equations (34) and (36) indicate that both the resonance amplitude and the
sharpness of resonance of water-loaded plates are functions of the autocoupled
fluid mass u ijij and the equivalent flaid damping r!-. Table I shows that
autocoupled mass is large compared with the mass oithe plate. To determine
how much the equivalent fluid damping r!. influences the water-loaded plate-
acceleration spectra, Eqs. (34), (35), (3d), and (37) were compared witn the
computed spectra in Fig. 11.

If the equivalent fluid damping rm were negligible, the water-loaded
plate resonance amplitudes would be lower than those of the corresponding air-
loaded plate by an amount equal to 1 + (t 1 A). Further, the resonances would
be sharper for water loading than for air loading by an amount equal to
J1 + (I- However, Fig. 11 and the values of listed in Table 1
reveal that resonances associated with water-loaded plate spectra are actually
lower in height andbroader inwidth than those predicted byrmass considerations
alone from Eqs. (34), (35), (36), and (37). One may conclude that the equiva-
lent fluid damping r' is not negligible compared with the plate damping.

Table 2 lists the computed values of plate damping r. autocotipled fluid
damping ri3 ij, and the equivalent fluid damping rj for the resonances in
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Table 2

PLATE, AUTOCOUPLED-FLUID, AND
EQUIVALENT-FLUID DAMPING

Mode No.
r r rm-n mnmn mn

1-1 2.39 5.29 5.53

3-1 8.27 17.45 2.36

1-3 15.65 76.40 9.10

3-3 21.55 17.80 5.38

Fig. 11. The values of equivalent fluid damping rj were computed by utilizing
Eq. (35), the water-loaded plate-acceleration spectra in Fig. 11, and the values
of uijij listed in Table 1. A comparison of r!. and r reveals that the equiv-
alent fluid damping and plate damping are generally about the same order of
magnitude. A comparison of r! - and the autocoupled fluid damping rijij re-
veals a wide variation h. their magnitudes at each resonance. Although it is not
known how the cross-coupled damping terms rijkl combine to produce an
equivalent damping rij, the wide variation between r!i and r- i reinforces
the hypothesis that the value of rij is a result of many contributibns of rijkl

TILE DAMPING

The approximate theory (Eqs. (34) and (35)) developed to evaluate quanti-
tatively the effects of water loading can also be utilized to understand the
reduction in plate acceleration at resonance that accompanies the application of
damping tiles. Tile applications increase the flexural rigidity, mass, and damp-
ing of a plate. However, the flexural rigidity of damping tile is only about
15 percent of that of the plate; therefore any increase in the flexural rigidity of
the plate due to tile application can be considered negligible. Further, the
mass of a damped plate can be expressed as the sum of the plate mass p and
the damping-tile mass -T. But the total damping of a plate can not be expressed
in terms of the sum of the individual damping coefficients of the plate and the
tile; hence the damping coefficient of the damped plate is denoted by rd.

26



TR 4249

Consequently,. from Eqs. (34) and (35), the ratios of acceleration ampli-
tudes at corresponding rescnances for damped and undamped plPtes may be

= written

+ PTrrd~id
Sta(Wij)/4)ad(wijd) = T w (39)

and

P r +Iji 1]I +r r!.(CO.) 2
1 LJ rdJi J)

ij a ij p + ;I ir(oJ) +r!.((_) 9 (40)

where the subscript d denotes a quantity associated with the damped plate and,
from Eqs. (6) and (30),

ILI FD AT (, 41)

and

Sj= Wi d + 1iii jI (42)

Note in Eqs. (39) and (40) that, at corresponding resonances, damped and
£ -undamped plate accelerations are evaluated at different frequencies. Conse-

quently, to quantitatively interpret the reduction due to tile damping and wt-ater
loading, the dependency of uijij and rij on frequency must be determined.

For the frequency range of Fig. 11, one may show that the plate wave
number kij is always greater than the acou:-fic wave number kD of the
water. For kij greater than ko, one may postulate from Eq. (18) that
Jui jis approximafelv constant for 0 < w<(.1i-. Siilarly, fror k.......ftha k° , Eq. (17) reveals that rijkf is directly proportional to frequency
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contributions of rijk," it seems reasonable to assume that r!. is alsopropor-
~tional to frequency squared. Comparison of Eqs. (30) and (42)"shows that the

natural frequencies of the damped water-loaded plate are lower than those of
the undamped plate as a result of the additional mass of the tile. Because of the
dependence of r!- (n frequency, one may conclude that the equivalent fluid
damping r!.(w!.d) of the damped plate is less than the fluid damping r (W!)
of the undamped plate.

Clearly, then,

U+; T + 'i. (W!d) " P15
ii • <.T (43)

"ijijj

and

rd +r!(w!.d) rd
IiJ ILJ <d(44)r+ r!j(wl ) r' - "(4

From Eqs. (39), (40), (43), and (44), it is apparent that the reduction of reso-
nance amplitudes due todamping tiles is less in water than in air simplybecause
the mass and damping added to the system by the tile are smaller proportions
of the undamped system totals for water loading than for air loading.

The approximate theory developed above enables one to quantitatively
separate the effects attributable to the properties of the damping tiles from
those effects associated with water loading. Before utilizing the theory to
analyze the experimental results, however, its applicabilityto the experimental
conditions must be examined.

*This dependency of rijk, on frequency is only valid for odd-odd plate

modes. For even-odd or even-even plate modes, the dependency of rijij on
frequency is not known. However, it can be shown from Eq. M) that - I

small and may be neglected for even-odd or even-even modes.
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K BOUNDARY CONDITIONS

The only difference between the theoretical model utilized to develop the
approximate theory and the experimental model is in the boundary conditions
at ife edges of the plate. The theoretical model assumed a simply supported
boundary condition and the experiment utilized a clamped-edge bcundary. This
difference effects a change in mode shapes, which in turn causes changes
in an' and wrn that also affect Pnlqs and rmnqs (Eqs. (5), (6), (17),
and (18)). However, becase the geiieral equation of motion (Eq. (1)) is appli-
cable for any thin plate regardless of boundary conditions, one would expect to
obtain a solution that, for either boundary condition, exhibits a similar depend-
ence on the properties of the fluid and of the plate. It is concluded that the
approximate theory may be applied to the measured acceleration spectra of
the clamped-edge plate if the terms amn and wmn are redefined, and umnmn
and rmn are amended.

The fluid mass and damping of the vibration system are quantities to be
computed from the measured acceleration spectra; consequently, for the
clamped-edge plate, these terms can simply be denoted by 1! and rijc ,
respectively, and substituted in Eqs. (30), (34), and (36). However, computa-
tion of uijc and r!ic, based on Eqs. (30), (34), and (36), requires knowledge
of a__ and Wmn Although wmn can be determined by inspection of the
measured plate acceleration spectra, a'm can not. Therefore the ratio of
accelerations for air- and water-loaded plates must be utilized to compute the
effects of water loading. Computations of this type cancel the dependence of
acceleration spectra on the modal coefficients (amn) of the plate, but only the
relative effects of water loading can be quantitatively evaluated.

To cancel the modal coefficients amn, however, one must show that the
mode shapes of air- and water-loaded clamped-edge plates are similar. For
a simply supported plate, the cross coupling between water and plate motion
causes a difference in mode shapes for air- and water-loaded plates. Since the
equivalent fluid damping r n is a result of many contributions of rmnqs,
whereas the fluid mass immn is not, one may hypothesize that the change in
mode shapes results from the extensive cross coupling of the fluid resistive
forces rmnqs w. However, from the values of u nmmn and r' listed in
Tables 1 and 2, respectively, one may show that the fluid inertial forces
umnmn w2 are much greater than the fluid resistive forces rm W. Because
the autocoupled inertial forces dominate over the resistive forces, one may
conclude that the difference in mode shapes for air- and water-loaded simply
supported plates would be slight. To ensure that the difference in mode shapes
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betwp-n air- and water-loaded clamped-edge plates is slight, it must be shown
th,. nre autocoupled fluid mass is the controlling mass term and that the fluid
inertial forces are greater than the fluid resistive forces.

For high-frequency modal resonances, clamped-edge plate modes become
similar in shape to simply supported plate modes. Thus, one may state that
any difference between air- and water-loaded plate modes will be insignificant
at high frequencies. However, at low-frequency modal resonances, where
mode shapes of a simply supported plate are not similar to those for a clamped-

| edge plate, it must be assumed that any difference between air- and water-loadedclamped-edge plate modes will be small.

From the above and Eqs. (30), (34), (35), (36), and (37), the air- and
water-loading ratios of natural plate frequencies, resonance amplitudes, and
sharpness of resonances may be written, respectively, as

+n 1 m- j/2

mn

r 1

and

Q(Wn) = _1/2 r + r (
"'mn c(" i x) (47)

MR) mn mnn TI

1 ffor a clamped-edge plate.

For the purpose of evaluating the effectiveness of tiles for damping a
simply supported plate, the reduction in plate acceleration (accompanying an
application of damping tiles) is expressed as a ratio of resonance amplitudes
for the damped and undamped plates (Eqs. (39) and (40)). The ratio provides a
measure of the damping-tile effectiveness that is independent of amn. Thus,
Eqs. (39) and (40) may be written for a clamped-edge plate as
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rd(ad n =W(48)
r [2: L r ( ' m .()8)

and ba 'mn)/*ad(wnind) F rwJ
and

r'wM + c od1d + r (W( " d 2
a n d('nnd) Tmnm) J rr' mc 1 (49)I 'A (mu n fll . n mn

In both Eqs. (48) and (49), rd demotes damping of the tile-plate combina-
tion. For this analysis, rd is assumed to be constant for air or water environ-
ments-that is, the water environment does not alter the damping properties of
the tiles.

MASS AND DAMPING RATIOS

Table 3 lists both the ratio of the total mass of awater-loaded plate to that
of an air-loaded plate and the ratio of the total damping of a water-loaded plate
to that of an air-loaded plate. These ratios were computed for a few corre-
sponding air- and water-loaded resonances from the undamped-plate acceleration
spectra of Figs. 7, 8, 9, and 10 for both (x, y) measurement points. Computa-
tion of these ratios was based on Eqs. (45) and (46) in conjunction with the
measured reduction in resonance frequencies and amplitudes accompan-ring
water-loading. The ratios listed in Table 3 clearly indic (.' that the increases
in both mass and damping due to water loading a plate are quite substantial.
Further, the damping ratios for the first and third resonances are greater at
the measurement point (x = 2.5 ft, y = 1.0 ft) than at the measurement point
(x = 1.5 ft, y = 1.0 ft). Reference 7 shows that the damping of a point-excited,
clamped-edge plate in air appears to decrease with increasing distance from the
point of excitation. Inasmuch as the fluid damping r;nnc is independent of its
spatial location, the larger ratios of water- to air-loaded plate damping at
(x = 2.25 ft, y = 1.0 ft) are a result of the decreased damping in air due to in-
creased distance from the excitation point.

Table 4 lists, for both air- and water-loaded plates, the ratio of total mass
of the damped plate to that of the undamped plate and the ratio of total damping of
the damped plate to that of the undamped plate. These ratios were computed
for the corresponding damped and undamped plate resonances in Figs. 7, 8, 9,
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Table 3

RATIOS OF WATER-LOADED TO AIR-LOADED SYSTEM MASS AND

OF WATER-LOADED TO AIR-LOADED SYSTEM DAMPING

x=1.5ft, y=1.Oft x=2.25ft, y=1.0ft

Resonance Resonance r cA mnC rI n Frequencies (Hz . nC mn
Frequencies (Hz) 1 + n + Fq c (Hz) 1 + --

f fl ) r f ft A r
mn mn mn mn

110 48 5.25 6.16 107 48 4.98 11.9

.... 175 69 6.45 2.64

255 119 4.58 1.20 245 117 4.40 1.55

320 230 1.93 3.04 -...

and 10 for both pointsof measurement on the plate; the undamped air- and water-
loaded plate resonances are identical with those listed in Table 3.

The masses of the plate and the dampingtiles were measured to determine
the mass ratio of damped to undamped plates in air. The damping ratio of
damped to undamped plates in air was then computed by utilizing Eq. (48) in
conjunction with the measured reduction in resonance amplitudes accompanying
the application of damping tiles. To compute the ratios of mass and damping

for damped and undamped water-loaded plates, one first computes the ratios of
mass and damping for air- and water-loaded damped plates via the method uti-
lized for the computations of Table 3. From these ratios and those listed in
Table 3, where (,u + .T)/ and rd/r are known, one may easily compute the
mass and damping ratios of damped to undamped plates in water. The increase,
upon the application of damping tiles, in both total mass and total damping is
less for water loading than the increase for air loading. (An exception is noted
for the damping ratio of the third resonance.)

From the above and Table 3, the total mass and damping are effectively
greater for a plate in water than for one in air; therefore any increase in the
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Table 4

RATIOS OF DAMPEr TO UNDAMPED TOTAL PLATE MASS AND
OF DAMPED TO UNDAMPED TOTAL PLATE DAMPING FOR

AIR- AND WATER-LOADED PLATES

(x = 1.5 ft, y= 1.0 ft)

Resonance Frequencies P + T + c r + r'
(Hz) - + YT T mn rd d InC

-+II 1'n - r + r'
f nd f f mn r mn

110 92 48 47 1.43 1.05 1.98 1.23

255 210 119 118 1.43 0.98 1.33 1.47

320 310 230 230 1.43 1.35 2.05 1.19

(x=2.25ft, y=1.0ft)

Resonance Frequencies IA +T + A, r +r'

(Hz) p +A T _T__rd rd rnC
fnf frn d f' j + .U n c  - r + r'

f mn .d Ir rane

107 90 48 47 1.43 1.05 2.65 1.30

175 138 69 66 1.43 0.97 2.97 2.31

245 207 117 114 1.43 1.07 2.05 2.50
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total mass and damping of the vibration system due to damping tiles is propor-
tionally less for water loading than for air loading. Inasmuch as an increase in
damping and mass causes a lowering of p.jak spectral levels at resonance, the
smaller reduction of peak levels for water loading is attributable to the tiles'
proportionally less effective contribution to the system's mass and damping.
However, a comparison of Figs. 8 and 10 will show that there is a greater de-
gree of resonance amplitude reduction (accompanying the application of damping
tiles) fora plate inwater than forone in air at frequencies greater than 1500 Hz;
the theory does not account for this discrepancy and the reason for It was not
determined.

From the ratios of mass and dampinglisted inTable 4, one may show that
the reduction (accompanying the application of damping tiles) in mean-squared
acceleration within the bandwidth of a particular resonance is less for water
loading than for air loading. Here, the mean-squared acceleration (am>
within the bandwidth of a particular resonance Is proportional to the height of
resonance *amn multiplied by its half-power-point bandwidth. Thus, from
Eqs. (45), (46), and (47) one may show, for water loading, that

(a 2 n> [ +- (ci ) r +r ( ) (50)

amnd>niernMem

and, for air loading, that

2 2

rn [rd(WJmd)l
a J2 (> P+) .L (51)

in m

Then, from the damping and mass ratios shown in Table 4, one may show by
Eqs. (50) and (51) that

2 2
<am2> <a2 >

, < nn (52)
adP <at2 d>

Consequently, both the fluid mass and damping limit not only damping-tile reduc-
tiosis in resonance amplitudes but, also, mean-squared acceleration within the
bandwidth of a resonance.
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SUMMARY AND CONCLUSIONS

Comparison of the measured damped and undamped plate-acceleration
spectra for both air and water environments revealed that the reduction in reso-
nance amplitudes resulting from the application of damping tiles to a plate was
less for water loading than for air loading. Because plate vibration levels are
directly related to vibration-induced pressure levels in the fluid surrounding a
plate, the amount of reduction in acceleration levels provides a measure of
damping-tile effectiveness. Consequently, a decrease in the reduction of reso-
nance amplitudes for water loading was interpreted as a decrease in the effec-
tiveness of damping tiles.

The theoretical model was utilized to explain the decreased effectiveness
of damping tiles observed for water loading. Based on the theoretical model,
computed acceleration spectra were compared for air- and water-loaded un-
damped plates to determine the effects of water loading. An approximate theory
was developed from the theoretical model, in conjunction with computed spec-
tra, to quantitatively evaluate both the effects of water loading and the effects
of applying damping tiles to a water-loaded plate.

From the theoretical model, it was determined that the pressure field in-
duced by plate vibrations produces additional forces on the plate; these forces
were interpreted as additional mass and damping of the plate. Applying damp-
ing tile: to a plate was also interpreted as an increase to the mass and damping
of the plate. By using the approximate theory as a basis, the additional fluid
mass was found to be equal to or up to five times greater than the mass of the
plate, and the additional fluid damping was found to be equal to or up to ten
times greatr than the damping of the plate. Clearly, water loading substan-
tially increases the mass and damping of the plate.

The approximate theory shows that an increase in mass alone affects the
plate acceleration at resonance by

* lowering resonance amplitudes,

* increasing the sharpness of resonance, and

* lowering resonance frequencies.
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Additionally, an increase in damping alone causes

* a lowering of resonance amplitudes and

* a decrease in the sharpness of resonance.

The approximate theory also shows that the combined effect of increasing both
the mass and damping of a plate is to decrease the mean-squared acceleration
associated with the half-power bandwidth of a resonance. These effects were
in agreement with the measured spectra.

Total mass and damping are effectively greater for a plate in water than
in air; therefore the increase in total mass and damping to a plate due to the
application of damping tiles is proportionately less for water loading than for
air loading. Inasmuch as an increase in the mass and damping of the plate causes
a lowering of both resonance amplitudes and mean-squared acceleration asso-
ciated with thehalf-power bandwidih of resonances, the fluid mass and damping
are responsible for the decreased effectiveness of damping tiles in water.

In most practical applications of damping tiles, the mass and damping
associated with a water environment are large compared with the mass and
damping of plating. Consequently, it is apparent that, in determining the effec-
tiveness of damping tiles applied to plating in water, measurements of the
properties of damped and undamped plates in air alone are insufficient. The
approximate theory enables one to quantitatively evaluate the fluid mass and
damping based on measurements of resonance vibration amplitudes. Reference 7
describrs a technique of measuring the sharpness of resonance Q for air- and
water-loaded clamped-edge plates. This measurement, in conjunction with the
approximate theory defining the Q of air- and water-loaded plates, can also be
used to qualitatively evaluate the fluid mass and damping. Either of these com-
bined experimental and theoretical methods for determining the effects of water
loading on plate vibrations should be more accurate than any purely theoretical
assessment of the effects of water loading. Further, it can be shown that the
approximate theory may be applied to most thin plates regardless of the boundary
conditions. The only limitation imposed on the theory is that the wave number
of the plate must be greater than the acoustic wave number of the fluid environ-
ment; in most practical applications, however, the limit imposed on the wave
number of the plate is not approached. Consequently, the theory can be a valu-
able tool for determining the effects of water loading with respect to assessing
the effectiveness of damping tiles for reducing vibration of plates in water.
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